Technology
A smarter way to make ultraviolet light beams — Existing coherent ultraviolet light sources are power hungry, bulky and expensive. University of Michigan researchers have found a better way to build compact ultraviolet sources with…
Biocompatible graphene transistor array reads cellular signals — Researchers have demonstrated, for the first time, a graphene-based transistor array that is compatible with living biological cells and capable of recording the electrical signals…
Researchers find some smartphone models more vulnerable to attack — New research from North Carolina State University shows that some smartphones specifically designed to support the Android mobile platform have incorporated additional features that…
MIT: New algorithm may improve defensive driving — In 2008, according to the National Highway Traffic Safety Administration, 2.3 million automobile crashes occurred at intersections across the United States, resulting in some 7,000…
Researchers use CT to recreate Stradivarius violin — Using computed tomography (CT) imaging and advanced manufacturing techniques, a team of experts has created a reproduction of a 1704 Stradivarius violin. Three-dimensional images of…
Terminator-style info-vision takes step towards reality — The streaming of real-time information across your field of vision is a step closer to reality with the development of a prototype contact lens that could potentially provide the wearer…
Scientists invent long-lasting, near infrared-emitting material — Materials that emit visible light after being exposed to sunlight are commonplace and can be found in everything from emergency signage to glow-in-the-dark stickers. But until now,…
Team of researchers develop world's lightest material — A team of researchers from UC Irvine, HRL Laboratories and the California Institute of Technology have developed the world's lightest material - with a density of 0.9 mg/cc - about…
Humans can control a cursor with power of thought — The act of mind reading is something usually reserved for science-fiction movies but researchers in America have used a technique, usually associated with identifying epilepsy, for…
Nanoparticles improve solar collection efficiency — Using minute graphite particles 1000 times smaller than the width of a human hair, mechanical engineers at Arizona State University hope to boost the efficiency - and profitability…
Where am I? > Home > News > Technology

New equation could advance research in solar cell materials

Science Centric | 22 October 2010 19:58 GMT
Printable version A clip for your blog or website E-mail the story to a friend
Bookmark or share the story on your social network Vote for this article Decrease text size Increase text size
DON'T MISS —
Bye to batteries and power sockets
Bye to batteries and power sockets — When a factory machine breaks down, it's hard to know what to do. Production often comes to a standstill until the error…
Measuring the footprint of cells
Measuring the footprint of cells — Even the slightest differences are important in competitive sport: To improve a ski jumper's performance, the trainer can…
More Technology

A groundbreaking new equation developed in part by researchers at the University of Michigan could do for organic semiconductors what the Shockley ideal diode equation did for inorganic semiconductors: help to enable their wider adoption.

Without the Shockley equation, the computers of today would not be possible.

Developed in 1949 by William Shockley, the inventor of the transistor, the Shockley equation describes the relationship between electric current and voltage in inorganic semiconductors such as silicon.

The new equation describes the relationship of current to voltage at the junctions of organic semiconductors - carbon-rich compounds that don't necessarily come from a biological source, but resemble them. Organic semiconductors present special challenges for researchers because they are more disordered than their inorganic counterparts. But they could enable advanced solar cells, thin and intense OLED (organic light-emitting diode) displays, and high-efficiency lighting.

'The field of organic semiconductor research is still in its infancy. We're not making complicated circuits with them yet, but in order to do that someday, we need to know the precise relationship of current and voltage. Our new equation gives us fundamental insights into how charge moves in this class of materials. From my perspective, it's a very significant advance,' said Steve Forrest, the William Gould Dow Collegiate Professor of Electrical Engineering and U-M vice president for research.

Forrest and his doctoral students, Noel Giebink (now at Argonne National Laboratories) and Brian Lassiter, in the U-M Department of Electrical Engineering and Computer Science, contributed to this research. Two papers on the work are published in the current edition of Physical Review B.

About six years ago, researchers in Forrest's lab realised that they could use Shockley's equation to describe the current/voltage relationship in their organic solar cells to a degree.

'It fit nicely if you didn't look too hard,' Forrest said.

Their findings were published, and from that time on, many physicists and engineers used the Shockley equation for organic semiconductors even though it didn't describe the physics perfectly. The new equation does.

Forrest says it will allow researchers to better describe and predict the properties of the different organic semiconductors they're working with. And in that way, they'll be able to more efficiently choose which material best suits the needs of the device they're working on.

'People have been investigating organic semiconductors for 70 or 80 years, but we're just entering the world of applications,' Forrest said. 'This work will help advance the field forward.'

Source: University of Michigan News Service


Leave a comment
The details you provide on this page [e-mail address] will not be used to send unsolicited e-mail, and will not be supplied to a third party! Please note that we can not promise to give everyone a response. Comments are fully moderated. Once approved they will be posted within 24 hours.
Expand the form to leave a comment

RSS FEEDS, NEWSLETTER
Find the topic you want. Science Centric offers several RSS feeds for the News section.

Or subscribe for our Newsletter, a free e-mail publication. It is published practically every day.

Researchers aim to mitigate impact of unintended hydrogen leaksResearchers aim to mitigate impact of unintended hydrogen leaks

— Materials researchers across the globe have fervently been working to find the ideal hydrogen storage material, one that will safely and efficiently provide the…

Nanowires will boost solar cell efficiencyNanowires will boost solar cell efficiency

— University of California, San Diego electrical engineers have created experimental solar cells spiked with nanowires that could lead to highly efficient thin-film…

Researcher invents alternative to silicon chipResearcher invents alternative to silicon chip

— Even before Weixiao Huang received his doctorate from Rensselaer Polytechnic Institute, his new transistor captured the attention of some of the biggest American…

Novel gas sensors for monitoring carbon dioxideNovel gas sensors for monitoring carbon dioxide

— A novel gas sensor system makes it possible to monitor large areas cost-effectively the first time. The patented gas sensor is based on the principle of diffusion,…

Popular tags in Technology: graphene · laser · nanotube · semiconductor